How fungi defend themselves against microbial competitors and animal predators (2024)

1. Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spatafora JW, et al. The fungi. Curr Biol. 2009;19(18):R840–5. 10.1016/j.cub.2009.07.004 ; PubMed Central PMCID: PMC2913116. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Bills GF, Gloer JB, An Z. Coprophilous fungi: antibiotic discovery and functions in an underexplored arena of microbial defensive mutualism. Curr Opin Microbiol. 2013;16(5):549–65. Epub 2013/08/28. doi: S1369-5274(13)00142-2 [pii] 10.1016/j.mib.2013.08.001 . [PubMed] [CrossRef] [Google Scholar]

3. Ruess L, Lussenhop J. Trophic interactions of Fungi and Animals In: J. D, White JF, Oudemans P, editors. The Fungal Community: Its Organization and Role in the Ecosystems. Boca Raton: CRC Press; 2005. p. 581–98. [Google Scholar]

4. Kempken F, Rohlfs M. Fungal secondary metabolite biosynthesis—a chemical defence strategy against antagonistic animals?Fungal Ecology. 2009;3:107–14. 10.1016/j.funeco.2009.08.001 [CrossRef] [Google Scholar]

5. Spiteller P. Chemical ecology of fungi. Nat Prod Rep. 2015;32(7):971–93. 10.1039/c4np00166d . [PubMed] [CrossRef] [Google Scholar]

6. Ding W, Liu WQ, Jia Y, Li Y, van der Donk WA, Zhang Q. Biosynthetic investigation of phom*opsins reveals a widespread pathway for ribosomal natural products in Ascomycetes. Proc Natl Acad Sci U S A. 2016;113(13):3521–6. 10.1073/pnas.1522907113 ; PubMed Central PMCID: PMC4822579. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Bills G, Li Y, Chen L, Yue Q, Niu XM, An Z. New insights into the echinocandins and other fungal non-ribosomal peptides and peptaibiotics. Nat Prod Rep. 2014;31(10):1348–75. 10.1039/c4np00046c . [PubMed] [CrossRef] [Google Scholar]

8. Sabotic J, Ohm RA, Kunzler M. Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies. Appl Microbiol Biotechnol. 2016;100(1):91–111. 10.1007/s00253-015-7075-2 . [PubMed] [CrossRef] [Google Scholar]

9. Kunzler M. Hitting the Sweet Spot: Glycans as Targets of Fungal Defense Effector Proteins. Molecules. 2015;20(5):8144–67. 10.3390/molecules20058144 . [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. van den Berg MA, Westerlaken I, Leeflang C, Kerkman R, Bovenberg RA. Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin54-1255. Fungal Genet Biol. 2007;44(9):830–44. 10.1016/j.fgb.2007.03.008 . [PubMed] [CrossRef] [Google Scholar]

11. Li Y, Chen L, Yue Q, Liu X, An Z, Bills GF. Genetic Manipulation of the Pneumocandin Biosynthetic Pathway for Generation of Analogues and Evaluation of Their Antifungal Activity. ACS Chem Biol. 2015;10(7):1702–10. 10.1021/acschembio.5b00013 . [PubMed] [CrossRef] [Google Scholar]

12. Hallen HE, Luo H, Scott-Craig JS, Walton JD. Gene family encoding the major toxins of lethal Amanita mushrooms. Proc Natl Acad Sci U S A. 2007;104(48):19097–101. Epub 2007/11/21. doi: 0707340104 [pii] 10.1073/pnas.0707340104 ; PubMed Central PMCID: PMC2141914. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Cho H, Uehara T, Bernhardt TG. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell. 2014;159(6):1300–11. 10.1016/j.cell.2014.11.017 ; PubMed Central PMCID: PMC4258230. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Bushnell DA, Cramer P, Kornberg RD. Structural basis of transcription: alpha-amanitin-RNA polymerase II cocrystal at 2.8 A resolution. Proc Natl Acad Sci U S A. 2002;99(3):1218–22. 10.1073/pnas.251664698 ; PubMed Central PMCID: PMC122170. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Anke H. Insecticidal and Nematicidal Metabolites from Fungi In: Hofrichter M, editor. The Mycota X: Industrial Applications, 2nd Edition The Mycota. Industrial Applications. Berlin Heidelberg: Springer-Verlag; 2010. p. 151–63. [Google Scholar]

16. Stockli M, Lin CW, Sieber R, Plaza DF, Ohm RA, Kunzler M. Coprinopsis cinerea intracellular lactonases hydrolyze quorum sensing molecules of Gram-negative bacteria. Fungal Genet Biol. 2016;102:49–62. 10.1016/j.fgb.2016.07.009 . [PubMed] [CrossRef] [Google Scholar]

17. Nielsen MT, Klejnstrup ML, Rohlfs M, Anyaogu DC, Nielsen JB, Gotfredsen CH, et al. Aspergillus nidulans synthesize insect juvenile hormones upon expression of a heterologous regulatory protein and in response to grazing by Drosophila melanogaster larvae. PLoS One. 2013;8(8):e73369 10.1371/journal.pone.0073369 ; PubMed Central PMCID: PMC3753258. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Meldau S, Erb M, Baldwin IT. Defence on demand: mechanisms behind optimal defence patterns. Ann Bot. 2012;110(8):1503–14. Epub 2012/10/02. doi: mcs212 [pii] 10.1093/aob/mcs212 . [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Bayram O, Braus GH. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev. 2012;36(1):1–24. Epub 2011/06/11. 10.1111/j.1574-6976.2011.00285.x . [PubMed] [CrossRef] [Google Scholar]

20. Stotefeld L, Scheu S, Rohlfs M. Fungal chemical defence alters density-dependent foraging behaviour and success in a fungivorous soil arthropod. Ecological Entomology. 2012;37(5):323–9. 10.1111/j.1365-2311.2012.01373.x PubMed PMID: WOS:000308636400001. [CrossRef] [Google Scholar]

21. Kaya E, Karahan S, Bayram R, Yaykasli KO, Colakoglu S, Saritas A. Amatoxin and phallotoxin concentration in Amanita phalloides spores and tissues. Toxicol Ind Health. 2013. 10.1177/0748233713491809 . [PubMed] [CrossRef] [Google Scholar]

22. Plaza DF, Lin CW, van der Velden NS, Aebi M, Kunzler M. Comparative transcriptomics of the model mushroom Coprinopsis cinerea reveals tissue-specific armories and a conserved circuitry for sexual development. BMC Genomics. 2014;15:492 10.1186/1471-2164-15-492 ; PubMed Central PMCID: PMC4082614. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Bleuler-Martinez S, Butschi A, Garbani M, Walti MA, Wohlschlager T, Potthoff E, et al. A lectin-mediated resistance of higher fungi against predators and parasites. Mol Ecol. 2011;20(14):3056–70. Epub 2011/04/14. 10.1111/j.1365-294X.2011.05093.x . [PubMed] [CrossRef] [Google Scholar]

24. Kettering M, Sterner O, Anke T. Antibiotics in the chemical communication of fungi. Z Naturforsch C. 2004;59(11–12):816–23. . [PubMed] [Google Scholar]

25. Schroeckh V, Scherlach K, Nutzmann HW, Shelest E, Schmidt-Heck W, Schuemann J, et al. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci U S A. 2009;106(34):14558–63. Epub 2009/08/12. doi: 0901870106 [pii] 10.1073/pnas.0901870106 ; PubMed Central PMCID: PMC2732885. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Doll K, Chatterjee S, Scheu S, Karlovsky P, Rohlfs M. Fungal metabolic plasticity and sexual development mediate induced resistance to arthropod fungivory. Proc Biol Sci. 2013;280(1771):20131219 Epub 2013/09/27. 10.1098/rspb.2013.1219 rspb.2013.1219 [pii]. ; PubMed Central PMCID: PMC3790476. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Konig CC, Scherlach K, Schroeckh V, Horn F, Nietzsche S, Brakhage AA, et al. Bacterium Induces Cryptic Meroterpenoid Pathway in the Pathogenic Fungus Aspergillus fumigatus. Chembiochem. 2013;14(8):938–42. Epub 2013/05/08. 10.1002/cbic.201300070 . [PubMed] [CrossRef] [Google Scholar]

28. Ola AR, Thomy D, Lai D, Brotz-Oesterhelt H, Proksch P. Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J Nat Prod. 2013;76(11):2094–9. 10.1021/np400589h . [PubMed] [CrossRef] [Google Scholar]

29. Drott MT, Lazzaro BP, Brown DL, Carbone I, Milgroom MG. Balancing selection for aflatoxin in Aspergillus flavus is maintained through interference competition with, and fungivory by insects. Proc Biol Sci. 2017;284(1869). 10.1098/rspb.2017.2408 ; PubMed Central PMCID: PMCPMC5745424. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Nurnberger T, Brunner F, Kemmerling B, Piater L. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev. 2004;198:249–66. Epub 2004/06/18. . [PubMed] [Google Scholar]

31. Ronald PC, Beutler B. Plant and animal sensors of conserved microbial signatures. Science. 2010;330(6007):1061–4. Epub 2010/11/26. doi: 330/6007/1061 [pii] 10.1126/science.1189468 . [PubMed] [CrossRef] [Google Scholar]

32. Xu XL, Lee RT, Fang HM, Wang YM, Li R, Zou H, et al. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe. 2008;4(1):28–39. Epub 2008/07/16. doi: S1931-3128(08)00174-1 [pii] 10.1016/j.chom.2008.05.014 . [PubMed] [CrossRef] [Google Scholar]

33. Hogan DA, Vik A, Kolter R. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol. 2004;54(5):1212–23. 10.1111/j.1365-2958.2004.04349.x . [PubMed] [CrossRef] [Google Scholar]

34. Hsueh YP, Mahanti P, Schroeder FC, Sternberg PW. Nematode-trapping fungi eavesdrop on nematode pheromones. Curr Biol. 2013;23(1):83–6. Epub 2012/12/19. 10.1016/j.cub.2012.11.035 [pii]. . [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Duxbury Z, Ma Y, Furzer OJ, Huh SU, Cevik V, Jones JD, et al. Pathogen perception by NLRs in plants and animals: Parallel worlds. Bioessays. 2016. 10.1002/bies.201600046 . [PubMed] [CrossRef] [Google Scholar]

36. Turra D, El Ghalid M, Rossi F, Di Pietro A. Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature. 2015;527(7579):521–4. 10.1038/nature15516 . [PubMed] [CrossRef] [Google Scholar]

37. Boyle JP, Parkhouse R, Monie TP. Insights into the molecular basis of the NOD2 signalling pathway. Open Biology. 2014;4(12). doi: UNSP 140178 10.1098/rsob.140178 PubMed PMID: WOS:000347901500001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Dyrka W, Lamacchia M, Durrens P, Kobe B, Daskalov A, Paoletti M, et al. Diversity and Variability of NOD-Like Receptors in Fungi. Genome Biol Evol. 2014;6(12):3137–58. 10.1093/gbe/evu251 . [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Paoletti M, Saupe SJ. Fungal incompatibility: evolutionary origin in pathogen defense?Bioessays. 2009;31(11):1201–10. Epub 2009/10/02. 10.1002/bies.200900085 . [PubMed] [CrossRef] [Google Scholar]

40. Furstenberg-Hagg J, Zagrobelny M, Bak S. Plant defense against insect herbivores. Int J Mol Sci. 2013;14(5):10242–97. 10.3390/ijms140510242 ; PubMed Central PMCID: PMC3676838. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Hernandez-Onate MA, Esquivel-Naranjo EU, Mendoza-Mendoza A, Stewart A, Herrera-Estrella AH. An injury-response mechanism conserved across kingdoms determines entry of the fungus Trichoderma atroviride into development. Proc Natl Acad Sci U S A. 2012. Epub 2012/08/29. doi: 1209396109 [pii] 10.1073/pnas.1209396109 . [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Takemoto D, Tanaka A, Scott B. NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol. 2007;44(11):1065–76. Epub 2007/06/15. doi: S1087-1845(07)00084-9 [pii] 10.1016/j.fgb.2007.04.011 . [PubMed] [CrossRef] [Google Scholar]

43. Marques JM, Rodrigues RJ, de Magalhaes-Sant'ana AC, Goncalves T. Saccharomyces cerevisiae Hog1 protein phosphorylation upon exposure to bacterial endotoxin. J Biol Chem. 2006;281(34):24687–94. 10.1074/jbc.M603753200 . [PubMed] [CrossRef] [Google Scholar]

44. Yin WB, Amaike S, Wohlbach DJ, Gasch AP, Chiang YM, Wang CC, et al. An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR. Mol Microbiol. 2012;83(5):1024–34. Epub 2012/01/31. 10.1111/j.1365-2958.2012.07986.x ; PubMed Central PMCID: PMC3288630. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Ahmed YL, Gerke J, Park HS, Bayram O, Neumann P, Ni M, et al. The Velvet Family of Fungal Regulators Contains a DNA-Binding Domain Structurally Similar to NF-kappaB. PLoS Biol. 2013;11(12):e1001750 10.1371/journal.pbio.1001750 ; PubMed Central PMCID: PMC3876986. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Fu ZQ, Dong X. Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol. 2013;64:839–63. 10.1146/annurev-arplant-042811-105606 . [PubMed] [CrossRef] [Google Scholar]

47. Espinas NA, Saze H, Saijo Y. Epigenetic Control of Defense Signaling and Priming in Plants. Front Plant Sci. 2016;7:1201 10.3389/fpls.2016.01201 ; PubMed Central PMCID: PMC4980392. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Bodenhausen N, Reymond P. Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Mol Plant Microbe Interact. 2007;20(11):1406–20. Epub 2007/11/06. 10.1094/MPMI-20-11-1406 . [PubMed] [CrossRef] [Google Scholar]

49. Blee E. Impact of phyto-oxylipins in plant defense. Trends Plant Sci. 2002;7(7):315–22. Epub 2002/07/18. doi: S1360138502022902 [pii]. . [PubMed] [Google Scholar]

50. Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH. Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci U S A. 2004;101(6):1781–5. Epub 2004/01/30. 10.1073/pnas.0308037100 [pii]. ; PubMed Central PMCID: PMC341853. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Yamaguchi Y, Huffaker A. Endogenous peptide elicitors in higher plants. Curr Opin Plant Biol. 2011;14(4):351–7. 10.1016/j.pbi.2011.05.001 . [PubMed] [CrossRef] [Google Scholar]

52. Orozco-Cardenas ML, Narvaez-Vasquez J, Ryan CA. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell. 2001;13(1):179–91. Epub 2001/02/07. ; PubMed Central PMCID: PMC102208. [PMC free article] [PubMed] [Google Scholar]

53. Salvador-Recatala V, Tjallingii WF, Farmer EE. Real-time, in vivo intracellular recordings of caterpillar-induced depolarization waves in sieve elements using aphid electrodes. New Phytol. 2014;203(2):674–84. 10.1111/nph.12807 . [PubMed] [CrossRef] [Google Scholar]

54. Leeder AC, Palma-Guerrero J, Glass NL. The social network: deciphering fungal language. Nat Rev Microbiol. 2011;9(6):440–51. Epub 2011/05/17. doi: nrmicro2580 [pii] 10.1038/nrmicro2580 . [PubMed] [CrossRef] [Google Scholar]

55. Nemcovic M, Jakubikova L, Viden I, Farkas V. Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett. 2008;284(2):231–6. 10.1111/j.1574-6968.2008.01202.x . [PubMed] [CrossRef] [Google Scholar]

56. Berendsen RL, Kalkhove SI, Lugones LG, Baars JJ, Wosten HA, Bakker PA. Effects of the mushroom-volatile 1-octen-3-ol on dry bubble disease. Appl Microbiol Biotechnol. 2013;97(12):5535–43. 10.1007/s00253-013-4793-1 . [PubMed] [CrossRef] [Google Scholar]

57. Tsitsigiannis DI, Keller NP. Oxylipins as developmental and host-fungal communication signals. Trends Microbiol. 2007;15(3):109–18. Epub 2007/02/06. doi: S0966-842X(07)00006-6 [pii] 10.1016/j.tim.2007.01.005 . [PubMed] [CrossRef] [Google Scholar]

58. Caballero Ortiz S, Trienens M, Rohlfs M. Induced fungal resistance to insect grazing: reciprocal fitness consequences and fungal gene expression in the Drosophila-Aspergillus model system. PLoS ONE. 2013;8(8):e74951 Epub 2013/09/12. 10.1371/journal.pone.0074951 PONE-D-13-22162 [pii]. ; PubMed Central PMCID: PMC3758311. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Ponce de Leon I, Hamberg M, Castresana C. Oxylipins in moss development and defense. Front Plant Sci. 2015;6:483 10.3389/fpls.2015.00483 ; PubMed Central PMCID: PMC4490225. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG, et al. Trained immunity: A program of innate immune memory in health and disease. Science. 2016;352(6284):aaf1098 10.1126/science.aaf1098 . [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Nutzmann HW, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, Gacek A, et al. Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci U S A. 2011;108(34):14282–7. Epub 2011/08/10. doi: 1103523108 [pii] 10.1073/pnas.1103523108 ; PubMed Central PMCID: PMC3161617. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Rohlfs M, Albert M, Keller NP, Kempken F. Secondary chemicals protect mould from fungivory. Biol Lett. 2007;3(5):523–5. Epub 2007/08/10. doi: 2731164232160636 [pii] 10.1098/rsbl.2007.0338 ; PubMed Central PMCID: PMC2391202. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Netzker T, Flak M, Krespach MK, Stroe MC, Weber J, Schroeckh V, et al. Microbial interactions trigger the production of antibiotics. Curr Opin Microbiol. 2018;45:117–23. 10.1016/j.mib.2018.04.002 . [PubMed] [CrossRef] [Google Scholar]

64. Adnani N, Rajski SR, Bugni TS. Symbiosis-inspired approaches to antibiotic discovery. Nat Prod Rep. 2017;34(7):784–814. 10.1039/c7np00009j ; PubMed Central PMCID: PMCPMC5555300. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Scharf DH, Brakhage AA, Mukherjee PK. Gliotoxin—bane or boon?Environ Microbiol. 2016;18(4):1096–109. 10.1111/1462-2920.13080 . [PubMed] [CrossRef] [Google Scholar]

66. Hasan H, Abd Rahim MH, Campbell L, Carter D, Abbas A, Montoya A. Overexpression of acetyl-CoA carboxylase in Aspergillus terreus to increase lovastatin production. N Biotechnol. 2018;44:64–71. 10.1016/j.nbt.2018.04.008 . [PubMed] [CrossRef] [Google Scholar]

67. Essig A, Hofmann D, Munch D, Gayathri S, Kunzler M, Kallio PT, et al. Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. J Biol Chem. 2014;289(50):34953–64. 10.1074/jbc.M114.599878 ; PubMed Central PMCID: PMC4263892. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Franzoi M, van Heuvel Y, Thomann S, Schurch N, Kallio PT, Venier P, et al. Structural Insights into the Mode of Action of the Peptide Antibiotic Copsin. Biochemistry. 2017;56(37):4992–5001. 10.1021/acs.biochem.7b00697 . [PubMed] [CrossRef] [Google Scholar]

69. Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, et al. Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science. 2010;328(5982):1168–72. Epub 2010/05/29. doi: 328/5982/1168 [pii] 10.1126/science.1185723 . [PubMed] [CrossRef] [Google Scholar]

70. Zhu S, Gao B, Harvey PJ, Craik DJ. Dermatophytic defensin with antiinfective potential. Proc Natl Acad Sci U S A. 2012;109(22):8495–500. 10.1073/pnas.1201263109 ; PubMed Central PMCID: PMC3365176. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. van der Velden NS, Kalin N, Helf MJ, Piel J, Freeman MF, Kunzler M. Autocatalytic backbone N-methylation in a family of ribosomal peptide natural products. Nat Chem Biol. 2017;13(8):833–5. 10.1038/nchembio.2393 . [PubMed] [CrossRef] [Google Scholar]

72. Bushley KE, Raja R, Jaiswal P, Cumbie JS, Nonogaki M, Boyd AE, et al. The genome of Tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster. PLoS Genet.2013;9(6):e1003496 10.1371/journal.pgen.1003496 ; PubMed Central PMCID: PMC3688495. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Plaza DF, Schmieder SS, Lipzen A, Lindquist E, Kunzler M. Identification of a Novel Nematotoxic Protein by Challenging the Model Mushroom Coprinopsis cinerea with a Fungivorous Nematode. G3 (Bethesda). 2015;6(1):87–98. 10.1534/g3.115.023069 ; PubMed Central PMCID: PMC4704728. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Wohlschlager T, Butschi A, Zurfluh K, Vonesch SC, Auf dem Keller U, Gehrig P, et al. Nematotoxicity of Marasmius Oreades Agglutinin (Moa) Depends on Glycolipid-Binding and Cysteine Protease Activity. J Biol Chem. 2011;286:30337–43. Epub 2011/07/16. doi: M111.258202 [pii] 10.1074/jbc.M111.258202 . [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Smid I, Rotter A, Gruden K, Brzin J, Buh Gasparic M, Kos J, et al. cl*tocypin, a fungal cysteine protease inhibitor, exerts its insecticidal effect on Colorado potato beetle larvae by inhibiting their digestive cysteine proteases. Pestic Biochem Physiol. 2015;122:59–66. 10.1016/j.pestbp.2014.12.022 . [PubMed] [CrossRef] [Google Scholar]

76. Olombrada M, Martinez-Del-Pozo A, Medina P, Budia F, Gavilanes JG, Garcia-Ortega L. Fungal ribotoxins: Natural protein-based weapons against insects. Toxicon. 2014;83C:69–74. 10.1016/j.toxicon.2014.02.022 . [PubMed] [CrossRef] [Google Scholar]

How fungi defend themselves against microbial competitors and animal predators (2024)

References

Top Articles
Latest Posts
Article information

Author: Rubie Ullrich

Last Updated:

Views: 6456

Rating: 4.1 / 5 (52 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Rubie Ullrich

Birthday: 1998-02-02

Address: 743 Stoltenberg Center, Genovevaville, NJ 59925-3119

Phone: +2202978377583

Job: Administration Engineer

Hobby: Surfing, Sailing, Listening to music, Web surfing, Kitesurfing, Geocaching, Backpacking

Introduction: My name is Rubie Ullrich, I am a enthusiastic, perfect, tender, vivacious, talented, famous, delightful person who loves writing and wants to share my knowledge and understanding with you.