The Sporobiota of the Human Gut (2024)

1. Storz G, Hengge-Aronis R.. Bacterial stress responses. Vol. 791. Washington (DC): AMS Press; 2011. [Google Scholar]

2. Al-Hinai MA, Jones SW, Papoutsakis ET. The Clostridium sporulation programs: diversity and preservation of endospore differentiation. Microbiol Mol Biol Rev. 2015;79(1):19–17. doi: 10.1128/MMBR.00025-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Setlow P. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol. 2006;101(3):514–525. doi: 10.1111/j.1365-2672.2005.02736.x. [PubMed] [CrossRef] [Google Scholar]

4. Setlow P. Spore germination. Curr Opin Microbiol. 2003;6(6):550–556. doi: 10.1016/j.mib.2003.10.001. [PubMed] [CrossRef] [Google Scholar]

5. Galperin MY. Genome diversity of spore-forming Firmicutes. Microbiol Spectrum. 2013;1(2):TBS-0015-2012. doi: 10.1128/microbiolspectrum.TBS-0015-2012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, Farley MM, Holzbauer SM, Meek JI, Phipps EC, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372(9):825–834. doi: 10.1056/NEJMoa1408913. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Abecasis AB, Serrano M, Alves R, Quintais L, Pereira-Leal JB, Henriques AO. A genomic signature and the identification of new sporulation genes. J Bacteriol. 2013;195(9):2101–2115. doi: 10.1128/JB.02110-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Yutin N, Galperin MY. A genomic update on clostridial phylogeny: gram‐negative spore formers and other misplaced clostridia. Environ Microbiol. 2013;15(10):2631–2641. doi: 10.1111/1462-2920.12173. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Tocheva EI, Matson EG, Morris DM, Moussavi F, Leadbetter J, Jensen G. Peptidoglycan remodeling and conversion of an inner membrane into an outer membrane during sporulation. Cell. 2011;146(5):799–812. doi: 10.1016/j.cell.2011.07.029. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. McCormick JR, Flärdh K. Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev. 2012;36(1):206–231. doi: 10.1111/j.1574-6976.2011.00317.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Sexton DL, Tocheva EI. Ultrastructure of exospore formation in Streptomyces revealed by cryo-electron tomography. Front Microbiol. 2020. September24;11(2378). doi: 10.3389/fmicb.2020.581135. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Müller FD, Schink CW, Hoiczyk E, Cserti E, Higgs PI. Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition. Mol Microbiol. 2012;83(3):486–505. doi: 10.1111/j.1365-2958.2011.07944.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Zusman DR, Scott AE, Yang Z, Kirby JR. Chemosensory pathways, motility and development in Myxococcus xanthus. Nature Rev Microbiol. 2007;5(11):862–872. doi: 10.1038/nrmicro1770. [PubMed] [CrossRef] [Google Scholar]

14. Shimkets LJ. Intercellular signaling during fruiting-body development of Myxococcus xanthus. Ann Rev Microbiol. 1999;53(1):525–549. doi: 10.1146/annurev.micro.53.1.525. [PubMed] [CrossRef] [Google Scholar]

15. Ricca E, Baccigalupi L, Cangiano G, De Felice M, Isticato R. Mucosal vaccine delivery by non-recombinant spores of Bacillus subtilis. Microb Cell Fact. 2014. August12;13(1):115. doi: 10.1186/s12934-014-0115-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Mattossovich R, Iacono R, Cangiano G, Cobucci-Ponzano B, Isticato R, Moracci M, Ricca E. Conversion of xylan by recyclable spores of Bacillus subtilis displaying thermophilic enzymes. Microb Cell Fact. 2017;16(1):218. doi: 10.1186/s12934-017-0833-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Nicholson WL, Galeano B. UV resistance of Bacillus anthracis spores revisited: validation of Bacillus subtilis spores as UV surrogates for spores of B. anthracis Sterne. Appl Environ Microbiol. 2003;69(2):1327–1330. doi: 10.1128/AEM.69.2.1327-1330.2003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Yung PT, Ponce A. Fast sterility assessment by germinable-endospore biodosimetry. Appl Environ Microbiol. 2008;74(24):7669–7674. doi: 10.1128/AEM.01437-08. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Siahmoshteh F, Hamidi-Esfahani Z, Spadaro D, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Unraveling the mode of antifungal action of Bacillus subtilis and Bacillus amyloliquefaciens as potential biocontrol agents against aflatoxigenic Aspergillus parasiticus. Food Control. 2018;89:300–307. doi: 10.1016/j.foodcont.2017.11.010. [CrossRef] [Google Scholar]

20. Deakin LJ, Clare S, fa*gan RP, Dawson LF, Pickard DJ, West MR, Wren BW, Fairweather NF, Dougan G, Lawley TD, et al. The Clostridium difficile spo0A Gene Is a Persistence and Transmission Factor. Infect Immun. 2012;80(8):2704–2711. doi: 10.1128/IAI.00147-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Lawley TD, Croucher NJ, Yu L, Clare S, Sebaihia M, Goulding D, Pickard DJ, Parkhill J, Choudhary J, Dougan G. Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores. J Bacteriol. 2009;191(17):5377–5386. doi: 10.1128/JB.00597-09. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. D’Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome. Science. 2006;311(5759):374–377. doi: 10.1126/science.1120800. [PubMed] [CrossRef] [Google Scholar]

23. Tetz G, Tetz V. Introducing the sporobiota and sporobiome. Gut Pathog. 2017. June30;9(1):38. doi: 10.1186/s13099-017-0187-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Piggot PJ, Hilbert DW. Sporulation of Bacillus subtilis. Curr Opin Microbiol. 2004;7(6):579–586. doi: 10.1016/j.mib.2004.10.001. [PubMed] [CrossRef] [Google Scholar]

25. Stragier P, Losick R. Molecular genetics of sporulation in Bacillus subtilis. Ann Rev Gen. 1996;30(1):297–341. doi: 10.1146/annurev.genet.30.1.297. [PubMed] [CrossRef] [Google Scholar]

26. Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ. Genomic determinants of sporulation in Bacilli and Clostridia : towards the minimal set of sporulation-specific genes. Environ Microbiol. 2012;14(11):2870–2890. doi: 10.1111/j.1462-2920.2012.02841.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Onyenwoke RU, Brill JA, Farahi K, Wiegel J. Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch (Firmicutes). Arch Microbiol. 2004;182(2–3):182–192. doi: 10.1007/s00203-004-0696-y. [PubMed] [CrossRef] [Google Scholar]

28. Galperin MY. Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol. 2006;188(12):4169–4182. doi: 10.1128/JB.01887-05. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Henriques AO, Moran J, Charles P. Structure, assembly, and function of the spore surface layers. Annu Rev Microbiol. 2007;61:555–588. doi: 10.1146/annurev.micro.61.080706.093224. [PubMed] [CrossRef] [Google Scholar]

30. Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, Lawley TD, Finn RD. A new genomic blueprint of the human gut microbiota. Nature. 2019;568(7753):499–504. doi: 10.1038/s41586-019-0965-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A, Simpson N, Kumar N, Stares MD, Rodger A, Brocklehurst P, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature. 2019;574(7776):117–121. doi: 10.1038/s41586-019-1560-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Hill CJ, Lynch DB, Murphy K, Ulaszewska M, Jeffery IB, O’Shea CA, Watkins C, Dempsey E, Mattivi F, Tuohy K, et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome. 2017;5(1):4. doi: 10.1186/s40168-016-0213-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Filippidou S, Junier T, Wunderlin T, Lo CC, Li PE, Chain PS, Junier P. Under-detection of endospore-forming Firmicutes in metagenomic data. Comput Struct Biotechnol J. 2015. January01;13:299–306. doi: 10.1016/j.csbj.2015.04.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Wang L-T, Lee F-L, Tai C-J, Kasai H. Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol. 2007;57(8):1846–1850. doi: 10.1099/ijs.0.64685-0. [PubMed] [CrossRef] [Google Scholar]

35. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi: 10.1038/nature08821. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S, Plichta DR, Gautier L, Pedersen AG, Le Chatelier E, et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nature Biotechnol. 2014;32(8):822–828. doi: 10.1038/nbt.2939. [PubMed] [CrossRef] [Google Scholar]

37. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci. 2010;107(33):14691–14696. [PMC free article] [PubMed] [Google Scholar]

38. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HMB, Coakley M, Lakshminarayanan B, O’Sullivan O, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–184. doi: 10.1038/nature11319. [PubMed] [CrossRef] [Google Scholar]

39. Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G,et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci. 2011;108(Supplement 1):4586–4591. doi: 10.1073/pnas.1000097107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–484. doi: 10.1038/nature07540. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027. doi: 10.1038/nature05414. [PubMed] [CrossRef] [Google Scholar]

42. Vogtmann E, Hua X, Zeller G, Sunagawa S, Voigt AY, Hercog R, Goedert JJ, Shi J, Bork P, Sinha R, et al. Colorectal cancer and the human gut microbiome: reproducibility with whole-genome shotgun sequencing. PloS One. 2016;11(5):e0155362. doi: 10.1371/journal.pone.0155362. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Halfvarson J, Brislawn CJ, Lamendella R, Vázquez-Baeza Y, Walters WA, Bramer LM, D’Amato M, Bonfiglio F, McDonald D, Gonzalez A, et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nature Microbiol. 2017;2(5):1–7. doi: 10.1038/nmicrobiol.2017.4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Kho ZY, Lal SK. The Human Gut Microbiome – A Potential Controller of Wellness and Disease [Review]. Front Microbiol. 2018. August14;9(1835). doi: 10.3389/fmicb.2018.01835. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Lagier J-C, Hugon P, Khelaifia S, Fournier PE, La Scola B, Raoult D. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev. 2015;28(1):237–264. [PMC free article] [PubMed] [Google Scholar]

46. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, Goulding D, Lawley TD. Culturing of ‘unculturable’human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533(7604):543–546. doi: 10.1038/nature17645. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Pfleiderer A, Lagier J-C, Armougom F, Robert C, Vialettes B, Raoult D. Culturomics identified 11 new bacterial species from a single anorexia nervosa stool sample. Eur J Clin Microbiol. 2013;32(11):1471–1481. doi: 10.1007/s10096-013-1900-2. [PubMed] [CrossRef] [Google Scholar]

48. Kearney SM, Gibbons SM, Poyet M, Gurry T, Bullock K, Allegretti JR, Clish CB, Alm EJ. Endospores and other lysis-resistant bacteria comprise a widely shared core community within the human microbiota. Isme J. 2018;12(10):2403–2416. doi: 10.1038/s41396-018-0192-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Forster SC, Kumar N, Anonye BO, Almeida A, Viciani E, Stares MD, Dunn M, Mkandawire TT, Zhu A, Shao Y, et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nature Biotechnol. 2019. February01;37(2):186–192. doi: 10.1038/s41587-018-0009-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Browne HP, Almeida A, Kumar N, Vervier K, Adoum AT, Viciani E, Dawson NJ, Forster SC, Cormie C, Goulding D,et al. Host adaptation in gut Firmicutes is associated with sporulation loss and altered colonisation patterns. bioRxiv. 2020; 2020.09.09.289504. [PMC free article] [PubMed] [Google Scholar]

51. Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog. 2013;5(1):23. doi: 10.1186/1757-4749-5-23. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Frank DN, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci. 2007;104(34):13780–13785. doi: 10.1073/pnas.0706625104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–341. doi: 10.1126/science.1198469. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, f*ckuda S, Saito T, Narushima S, Hase K, et al. T reg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500(7461):232–236. doi: 10.1038/nature12331. [PubMed] [CrossRef] [Google Scholar]

55. Cekanaviciute E, Pröbstel A-K, Thomann A, Runia TF, Casaccia P, Katz Sand I, Crabtree E, Singh S, Morrissey J, Barba P, et al. Multiple sclerosis-associated changes in the composition and immune functions of spore-forming bacteria. MSystems. 2018;3(6). doi: 10.1128/mSystems.00083-18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet J-P, Ugarte E, Muñoz-Tamayo R, Paslier DLE, Nalin R, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009;11(10):2574–2584. doi: 10.1111/j.1462-2920.2009.01982.x. [PubMed] [CrossRef] [Google Scholar]

57. Lakshminarayanan B, Harris HM, Coakley M, O’Sullivan Ó, Stanton C, Pruteanu M, Shanahan F, O’Toole PW, Ross RP. Prevalence and characterization of Clostridium perfringens from the faecal microbiota of elderly Irish subjects. J Med Microbiol. 2013;62(3):457–466. doi: 10.1099/jmm.0.052258-0. [PubMed] [CrossRef] [Google Scholar]

58. Ozaki E, Kato H, Kita H, Karasawa T, Maegawa T, Koino Y, Matsumoto K, Takada T, Nomoto K, Tanaka R,et al. Clostridium difficile colonization in healthy adults: transient colonization and correlation with enterococcal colonization. J Med Microbiol. 2004;53(2):167–172. doi: 10.1099/jmm.0.05376-0. [PubMed] [CrossRef] [Google Scholar]

59. Sagheddu V, Patrone V, Miragoli F, Puglisi E, Morelli L. Infant early gut colonization by Lachnospiraceae: high frequency of Ruminococcus gnavus.. Front Ped. 2016;4:57. [PMC free article] [PubMed] [Google Scholar]

60. Meehan CJ, Beiko RG. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol. 2014;6(3):703–713. doi: 10.1093/gbe/evu050. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Segata N, Haake SK, Mannon P, Lemon KP, Waldron L, Gevers D, Huttenhower C, Izard J. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 2012;13(6):R42. doi: 10.1186/gb-2012-13-6-r42. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Schloss PD, Iverson KD, Petrosino JF, Schloss SJ. The dynamics of a family’s gut microbiota reveal variations on a theme. Microbiome. 2014;2(1):25. doi: 10.1186/2049-2618-2-25. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K, Gao Z, Mahana D, Raju K, Teitler I, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488(7413):621–626. doi: 10.1038/nature11400. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Petrof EO, Gloor GB, Vanner SJ, Weese SJ, Carter D, Daigneault MC, Brown EM, Schroeter K, Allen-Vercoe E. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome. 2013;1(1):3. doi: 10.1186/2049-2618-1-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Laffin MR, Perry T, Park H, Gillevet P, Sikaroodi M, Kaplan GG, Fedorak RN, Kroeker K, Dieleman LA, Dicken B, et al. Endospore forming bacteria may be associated with maintenance of surgically-induced remission in Crohn’s disease. Sci Rep. 2018;8(1):1–9. doi: 10.1038/s41598-018-28071-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Fakhry S, Sorrentini I, Ricca E, De Felice M, Baccigalupi L. Characterization of spore forming Bacilli isolated from the human gastrointestinal tract. J Appl Microbiol. 2008;105(6):2178–2186. doi: 10.1111/j.1365-2672.2008.03934.x. [PubMed] [CrossRef] [Google Scholar]

67. Hong HA, To E, Fakhry S, Baccigalupi L, Ricca E, Cutting SM. Defining the natural habitat of Bacillus spore-formers. Res Microbiol. 2009;160(6):375–379. doi: 10.1016/j.resmic.2009.06.006. [PubMed] [CrossRef] [Google Scholar]

68. Tam NK, Uyen NQ, Hong HA, Duc LH, Hoa TT, Serra CR, Henriques AO, Cutting SM. The intestinal life cycle of Bacillus subtilis and close relatives. J Bacteriol. 2006;188(7):2692–2700. doi: 10.1128/JB.188.7.2692-2700.2006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Tetz V, Tetz G. Draft genome sequence of a strain of Bacillus intestinalis sp. nov., a new member of sporobiota isolated from the small intestine of a single patient with intestinal cancer. Genome Announc. 2017;5(22):e00489-17. [PMC free article] [PubMed] [Google Scholar]

70. Kotiranta A, Lounatmaa K, Haapasalo M. Epidemiology and pathogenesis of Bacillus cereus infections. Micr Infect. 2000;2(2):189–198. doi: 10.1016/S1286-4579(00)00269-0. [PubMed] [CrossRef] [Google Scholar]

71. Ceuppens S, Uyttendaele M, Drieskens K, Heyndrickx M, Rajkovic A, Boon N, Van de Wiele T. Survival and Germination of Bacillus cereus Spores without Outgrowth or Enterotoxin Production during In Vitro Simulation of Gastrointestinal Transit. Appl Environ Microbiol. 2012;78(21):7698. doi: 10.1128/AEM.02142-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H. Bacillus as potential probiotics: status, concerns, and future perspectives [Review]. Front Microbiol. 2017. August10;8(1490). doi: 10.3389/fmicb.2017.01490. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Rhee K-J, Sethupathi P, Driks A, Lanning DK, Knight KL. Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J Immunol. 2004;172(2):1118. doi: 10.4049/jimmunol.172.2.1118. [PubMed] [CrossRef] [Google Scholar]

74. Zhang HL, Li WS, Xu DN, Zheng -W-W, Liu Y, Chen J, Qiu Z-B, Dorfman RG, Zhang J, Liu J, et al. Mucosa-repairing and microbiota-balancing therapeutic effect of Bacillus subtilis alleviates dextrate sulfate sodium-induced ulcerative colitis in mice. Exp Ther Med. 2016. October01;12(4):2554–2562. doi: 10.3892/etm.2016.3686. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Liu Y, Gibson GR, Walton GE, Nie D. An in vitro approach to study effects of prebiotics and probiotics on the faecal microbiota and selected immune parameters relevant to the elderly. Plos One. 2016;11(9):e0162604. doi: 10.1371/journal.pone.0162604. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Honda H, Gibson GR, Farmer S, Keller D, McCartney AL. Use of a continuous culture fermentation system to investigate the effect of GanedenBC30 (Bacillus coagulans GBI-30, 6086) supplementation on pathogen survival in the human gut microbiota. Anaerobe. 2011. February01;17(1):36–42. [PubMed] [Google Scholar]

77. Duysburgh C, Van den Abbeele P, Krishnan K, Bayne TF, Marzorati M. A synbiotic concept containing spore-forming Bacillus strains and a prebiotic fiber blend consistently enhanced metabolic activity by modulation of the gut microbiome in vitro.. Int J Pharm: X. 2019. December01;1:100021. doi: 10.1016/j.ijpx.2019.100021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Cutting SM. Bacillus probiotics. Food Microbiol. 2011. April01;28(2):214–220. doi: 10.1016/j.fm.2010.03.007. [PubMed] [CrossRef] [Google Scholar]

79. Vos, P.,Garrity, G.,Jones, D.,Krieg, N.R.,Ludwig, W.,Rainey, F.A.,Schleifer, K.-H.,Whitman, W. Bergey’s manual of systematic bacteriology: volume 3: the Firmicutes. Vol. 3. Berlin, Germany: Springer Science & Business Media; 2011. [Google Scholar]

80. Mukhopadhya I, Moraïs S, Laverde-Gomez J, Sheridan PO, Walker AW, Kelly W, Klieve AV, Ouwerkerk D, Duncan SH, Louis P, et al. Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starch-degrader Ruminococcus bromii. Environ Microbiol. 2018;20(1):324–336. doi: 10.1111/1462-2920.14000. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Avershina E, Larsen MG, Aspholm M, Lindback T, Storrø O, Øien T, Johnsen R, Rudi K. Culture dependent and independent analyses suggest a low level of sharing of endospore-forming species between mothers and their children. Sci Rep. 2020. February04;10(1):1832. doi: 10.1038/s41598-020-58858-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res. 2016. November1;26(11):1612–1625. doi: 10.1101/gr.201863.115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Avershina E, Lundgård K, Sekelja M, Dotterud C, Storrø O, Øien T, Johnsen R, Rudi K. Transition from infant- to adult-like gut microbiota. Environ Microbiol. 2016;18(7):2226–2236. doi: 10.1111/1462-2920.13248. [PubMed] [CrossRef] [Google Scholar]

84. Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, Armanini F, Truong DT, Manara S, Zolfo M, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018. July11;24(1):133–145.e5. doi: 10.1016/j.chom.2018.06.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Asnicar F, Manara S, Zolfo M, Truong DT, Scholz M, Armanini F, Ferretti P, Gorfer V, Pedrotti A, Tett A, et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems. 2017;2(1):e00164–16. doi: 10.1128/mSystems.00164-16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Paredes-Sabja D, Setlow P, Sarker MR. Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends Microbiol. 2011. February01;19(2):85–94. doi: 10.1016/j.tim.2010.10.004. [PubMed] [CrossRef] [Google Scholar]

87. Korpela K, Costea P, Coelho LP, Kandels-Lewis S, Willemsen G, Boomsma DI, Segata N, Bork P. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 2018. April1;28(4):561–568. doi: 10.1101/gr.233940.117. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Yassour M, Jason E, Hogstrom LJ, Arthur TD, Tripathi S, Siljander H, Selvenius J, Oikarinen S, Hyöty H, Virtanen SM, et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe. 2018. July11;24(1):146–154.e4. doi: 10.1016/j.chom.2018.06.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Guittar J, Shade A, Litchman E. Trait-based community assembly and succession of the infant gut microbiome. Nature Comm. 2019. February01;10(1):512. doi: 10.1038/s41467-019-08377-w. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Lim ES, Zhou Y, Zhao G, Bauer IK, Droit L, Ndao IM, Warner BB, Tarr PI, Wang D, Holtz LR, et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat Med. 2015;21(10):1228–1234. doi: 10.1038/nm.3950. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Laursen MF, Andersen LBB, Michaelsen KF, Mølgaard C, Trolle E, Bahl MI, Licht TR. Infant Gut Microbiota Development Is Driven by Transition to family foods independent of maternal obesity. mSphere. 2016;1(1):e00069–15. doi: 10.1128/mSphere.00069-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Yassour M, Vatanen T, Siljander H, Hämäläinen A-M, Härkönen T, Ryhänen SJ, Franzosa EA, Vlamakis H, Huttenhower C, Gevers D, et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Trans Med. 2016;8(343):343ra81. doi: 10.1126/scitranslmed.aad0917. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Deering KE, Devine A, O’Sullivan TA, Lo J, Boyce MC, Christophersen CT. Characterizing the composition of the pediatric gut microbiome: A systematic review. Nutrients. 2020;12(1):16. doi: 10.3390/nu12010016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Wampach L, Heintz-Buschart A, Hogan A, Muller EEL, Narayanasamy S, Laczny CC, Hugerth LW, Bindl L, Bottu J, Andersson AF, et al. Colonization and succession within the human gut microbiome by archaea, bacteria, and microeukaryotes during the first year of life. Front Microbiol. 2017. May02;8(738). doi: 10.3389/fmicb.2017.00738. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Vallès Y, Artacho A, Pascual-García A, Ferrús ML, Gosalbes MJ, Abellán JJ, Francino MP. Microbial succession in the gut: directional trends of taxonomic and functional change in a birth cohort of Spanish infants. PLoS Genet. 2014;10(6):e1004406. doi: 10.1371/journal.pgen.1004406. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Rousseau C, Levenez F, Fouqueray C, Dore J, Collignon A, Lepage P. Clostridium difficile colonization in early infancy is accompanied by changes in intestinal microbiota composition. J Clin Microbiol. 2011;49(3):858. doi: 10.1128/JCM.01507-10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Appert O, Garcia AR, Frei R, Roduit C, Constancias F, Neuzil‐Bunesova V, Ferstl R, Zhang J, Akdis C, Lauener R,et al. Initial butyrate producers during infant gut microbiota development are endospore formers. Environ Microbiol. 2020;22(9):3909–3921. doi: 10.1111/1462-2920.15167. [PubMed] [CrossRef] [Google Scholar]

98. Roduit C, Frei R, Ferstl R, Loeliger S, Westermann P, Rhyner C, Schiavi E, Barcik W, Rodriguez‐Perez N, Wawrzyniak M, et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy. 2019;74(4):799–809. doi: 10.1111/all.13660. [PubMed] [CrossRef] [Google Scholar]

99. Cait A, Cardenas E, Dimitriu PA, Amenyogbe N, Dai D, Cait J, Sbihi H, Stiemsma L, Subbarao P, Mandhane PJ, et al. Reduced genetic potential for butyrate fermentation in the gut microbiome of infants who develop allergic sensitization. J Allergy Clin Immunol. 2019;144(6):1638–1647. e3. doi: 10.1016/j.jaci.2019.06.029. [PubMed] [CrossRef] [Google Scholar]

100. Hesla HM, Stenius F, Jäderlund L, Nelson R, Engstrand L, Alm J, Dicksved J. Impact of lifestyle on the gut microbiota of healthy infants and their mothers – the ALADDIN birth cohort. FEMS Microbiology Ecology. 2014;90(3):791–801. doi: 10.1111/1574-6941.12434. [PubMed] [CrossRef] [Google Scholar]

101. Lee E, Kim BJ, Kang MJ, Choi KY, Cho H-J, Kim Y, Yang SI, Jung Y-H, Kim HY, Seo J-H, et al. Dynamics of gut microbiota according to the delivery mode in healthy Korean infants. Allergy Asthma Immunol Res. 2016;8(5):471–477. doi: 10.4168/aair.2016.8.5.471. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Nagpal R, Tsuji H, Takahashi T, Nomoto K, Kawashima K, Nagata S, Yamashiro Y. Gut dysbiosis following C-section instigates higher colonisation of toxigenic Clostridium perfringens in infants. Benef Microbes. 2017;8(3):353–365. doi: 10.3920/BM2016.0216. [PubMed] [CrossRef] [Google Scholar]

103. van Nimwegen FA, Penders J, Stobberingh EE, Postma DS, Koppelman GH, Kerkhof M, Reijmerink NE, Dompeling E, van den Brandt PA, Ferreira I, et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J Allergy Clin Immunol. 2011. November01;128(5):948–955.e3. doi: 10.1016/j.jaci.2011.07.027. [PubMed] [CrossRef] [Google Scholar]

104. Simonyté Sjödin K, Hammarström M-L, Rydén P, Sjödin A, Hernell O, Engstrand L, West CE. Temporal and long-term gut microbiota variation in allergic disease: A prospective study from infancy to school age. Allergy. 2019;74(1):176–185. doi: 10.1111/all.13485. [PubMed] [CrossRef] [Google Scholar]

105. Al-Taiar A, Hammoud MS, Thalib L, Isaacs D. Pattern and etiology of culture-proven early-onset neonatal sepsis: a five-year prospective study. Int J Infect Dis. 2011. September01;15(9):e631–e634. doi: 10.1016/j.ijid.2011.05.004. [PubMed] [CrossRef] [Google Scholar]

106. Lamont R, Sobel J, Kusanovic J, Vaisbuch E, Mazaki-Tovi S, Kim SK, Uldbjerg N, Romero R. Current debate on the use of antibiotic prophylaxis for caesarean section. BJOG-Int J Obstet Gy. 2011;118(2):193–201. doi: 10.1111/j.1471-0528.2010.02729.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Tapiainen T, Koivusaari P, Brinkac L, Lorenzi HA, Salo J, Renko M, Pruikkonen H, Pokka T, Li W, Nelson K, et al. Impact of intrapartum and postnatal antibiotics on the gut microbiome and emergence of antimicrobial resistance in infants. Sci Rep. 2019. July23;9(1):10635. doi: 10.1038/s41598-019-46964-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, D. Lieber A, Wu F, Perez-Perez GI, Chen Y, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Trans Med. 2016;8(343):343ra82. doi: 10.1126/scitranslmed.aad7121. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Groer MW, Luciano AA, Dishaw LJ, Ashmeade TL, Miller E, Gilbert JA. Development of the preterm infant gut microbiome: a research priority. Microbiome. 2014. October13;2(1):38. doi: 10.1186/2049-2618-2-38. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Chernikova DA, Madan JC, Housman ML, Zain-ul-abideen M, Lundgren SN, Morrison HG, Sogin ML, Williams SM, Moore JH, Karagas MR, et al. The premature infant gut microbiome during the first 6 weeks of life differs based on gestational maturity at birth. Pediatr Res. 2018. July01;84(1):71–79. doi: 10.1038/s41390-018-0022-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Ward Doyle V, Scholz M, Zolfo M, Taft D, Schibler K, Tett A, Segata N, Morrow A. Metagenomic sequencing with strain-level resolution implicates uropathogenic E. coli in necrotizing enterocolitis and mortality in preterm infants. Cell Rep. 2016. March29;14(12):2912–2924. doi: 10.1016/j.celrep.2016.03.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Zhou Y, Shan G, Sodergren E, Weinstock G, Walker WA, Gregory KE. Longitudinal analysis of the premature infant intestinal microbiome prior to necrotizing enterocolitis: A case-control study. Plos One. 2015;10(3):e0118632. doi: 10.1371/journal.pone.0118632. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Cassir N, Benamar S, Khalil JB, Croce O, Saint-Faust M, Jacquot A, Million M, Azza S, Armstrong N, Henry M, et al. Clostridium butyricum Strains and Dysbiosis Linked to Necrotizing Enterocolitis in Preterm Neonates. Clin Infect Dis. 2015;61(7):1107–1115. doi: 10.1093/cid/civ468. [PubMed] [CrossRef] [Google Scholar]

114. Penders J, Vink C, Driessen C, London N, Thijs C, Stobberingh EE. Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol Lett. 2005;243(1):141–147. doi: 10.1016/j.femsle.2004.11.052. [PubMed] [CrossRef] [Google Scholar]

115. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015. May13;17(5):690–703. doi: 10.1016/j.chom.2015.04.004. [PubMed] [CrossRef] [Google Scholar]

116. Fallani M, Amarri S, Uusijarvi A, Adam R, Khanna S, Aguilera M, Gil A, Vieites JM, Norin E, Young D, et al. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiol. 2011;157(5):1385–1392. doi: 10.1099/mic.0.042143-0. [PubMed] [CrossRef] [Google Scholar]

117. Bergström A, Skov TH, Bahl MI, Roager HM, Christensen LB, Ejlerskov KT, Molgaard C, Michaelsen KF, Licht TR. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol. 2014;80(9):2889. doi: 10.1128/AEM.00342-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Thompson AL, Monteagudo-Mera A, Cadenas MB, Lampl ML, Azcarate-Peril MA. Milk- and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome. Front Cell Infect Microbiol. 2015. February05;5(3). doi: 10.3389/fcimb.2015.00003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Azad MB, Konya T, Guttman DS, Field CJ, Sears MR, HayGlass KT, Mandhane PJ, Turvey SE, Subbarao P, Becker AB, et al. Infant gut microbiota and food sensitization: associations in the first year of life. Clin Exp Allergy. 2015;45(3):632–643. doi: 10.1111/cea.12487. [PubMed] [CrossRef] [Google Scholar]

120. Lackey KA, Williams JE, Meehan CL, Zachek JA, Benda ED, Price WJ, Foster JA, Sellen DW, Kamau-Mbuthia EW, Kamundia EW, et al. What’s normal? Microbiomes in human milk and infant feces are related to each other but vary geographically: the INSPIRE Study. Front Nutr. 2019. April17;6(45). doi: 10.3389/fnut.2019.00045. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Hunt KM, Foster JA, Forney LJ, Schütte UME, Beck DL, Abdo Z, Fox LK, Williams JE, McGuire MK, McGuire MA, et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. Plos One. 2011;6(6):e21313. doi: 10.1371/journal.pone.0021313. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Murphy K, Curley D, O’Callaghan TF, O’Shea C-A, Dempsey EM, O’Toole PW, Ross RP, Ryan CA, Stanton C. The composition of human milk and infant faecal microbiota over the first three months of life: A pilot study. Sci Rep. 2017. January17;7(1):40597. doi: 10.1038/srep40597. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Pannaraj PS, Li F, Cerini C, Bender JM, Yang S, Rollie A, Adisetiyo H, Zabih S, Lincez PJ, Bittinger K, et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 2017;171(7):647–654. doi: 10.1001/jamapediatrics.2017.0378. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Cabrera-Rubio R, Mira-Pascual L, Mira A, Collado MC. Impact of mode of delivery on the milk microbiota composition of healthy women. J Dev Orig Health Dis. 2016;7(1):54–60. doi: 10.1017/S2040174415001397. [PubMed] [CrossRef] [Google Scholar]

125. Khodayar-Pardo P, Mira-Pascual L, Collado MC, Martínez-Costa C. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J Perinatol. 2014. August01;34(8):599–605. doi: 10.1038/jp.2014.47. [PubMed] [CrossRef] [Google Scholar]

126. Boix-Amorós A, Collado MC, Mira A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front Microbiol. 2016. April20;7(492). doi: 10.3389/fmicb.2016.00492. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Jost T, Lacroix C, Braegger CP, Rochat F, Chassard C. Vertical mother–neonate transfer of maternal gut bacteria via breastfeeding. Environ Microbiol. 2014;16(9):2891–2904. doi: 10.1111/1462-2920.12238. [PubMed] [CrossRef] [Google Scholar]

128. Decousser J-W, Ramarao N, Duport C, Dorval M, Bourgeois-Nicolaos N, Guinebretière M-H, Razafimahefa H, Doucet-Populaire F. Bacillus cereus and severe intestinal infections in preterm neonates: putative role of pooled breast milk. Am J Infect Control. 2013. October01;41(10):918–921. doi: 10.1016/j.ajic.2013.01.043. [PubMed] [CrossRef] [Google Scholar]

129. Rigourd V, Barnier JP, Ferroni A, Nicloux M, Hachem T, Magny JF, Lapillonne A, Frange P, Nassif X, Bille E, et al. Recent actuality about Bacillus cereus and human milk bank: a new sensitive method for microbiological analysis of pasteurized milk. Eur J Clin Microbiol Infect Dis. 2018. July01;37(7):1297–1303. doi: 10.1007/s10096-018-3249-z. [PubMed] [CrossRef] [Google Scholar]

130. Lewin A, Delage G, Bernier F, Germain M. Banked Human Milk and Quantitative Risk Assessment of Bacillus cereus Infection in Premature Infants: A Simulation Study. Can J Infect Dis Med Microbiol. 2019. February03;2019:6348281. doi: 10.1155/2019/6348281. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Demers-Mathieu V, Mathijssen G, Fels S, Chace DH, Medo E. Impact of vaccination during pregnancy and staphylococci concentration on the presence of Bacillus cereus in raw human milk. J Perinatol. 2020. September01;40(9):1323–1330. doi: 10.1038/s41372-019-0586-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

132. Demazeau G, Plumecocq A, Lehours P, Martin P, Couëdelo L, Billeaud C. A new high hydrostatic pressure process to assure the microbial safety of human milk while preserving the biological activity of its main components. Front Public Health. 2018. November06;6(306). doi: 10.3389/fpubh.2018.00306. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. Froh EB, Vanderpool J, Spatz DL. Best practices to limit contamination of donor milk in a milk bank. J Obstet Gynecol Neonatal Nurs. 2018. July01;47(4):547–555. doi: 10.1016/j.jogn.2017.12.002. [PubMed] [CrossRef] [Google Scholar]

134. Landers S, Updegrove K. Bacteriological screening of donor human milk before and after Holder pasteurization. Breastfeeding Med. 2010;5(3):117–121. doi: 10.1089/bfm.2009.0032. [PubMed] [CrossRef] [Google Scholar]

135. Commission CA, Commission CA . Standard for infant formula and formulas for special medical purposes intended for infants. Codex Stan. 2007;72:1981. [Google Scholar]

136. Kent RM, Fitzgerald GF, Hill C, Stanton C, Ross R. Novel approaches to improve the intrinsic microbiological safety of powdered infant milk formula. Nutrients. 2015;7(2):1217–1244. doi: 10.3390/nu7021217. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. McHugh AJ, Feehily C, Hill C, Cotter PD. Detection and enumeration of spore-forming bacteria in powdered dairy products [Review]. Front Microbiol. 2017. January31;8(109). doi: 10.3389/fmicb.2017.00109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Cho TJ, Kim HW, Kim NH, Park SM, Kwon JI, Kim YJ, Lee KW, Rhee MS. New insights into the thermophilic spore-formers in powdered infant formula: implications of changes in microbial composition during manufacture. Food Control. 2018. October01;92:464–470. doi: 10.1016/j.foodcont.2018.05.036. [CrossRef] [Google Scholar]

139. Sadiq FA, Li Y, Liu T, Flint S, Zhang G, He G. A RAPD based study revealing a previously unreported wide range of mesophilic and thermophilic spore formers associated with milk powders in China. Int J Food Microbiol. 2016. January18;217:200–208. doi: 10.1016/j.ijfoodmicro.2015.10.030. [PubMed] [CrossRef] [Google Scholar]

140. Zhuang K, Li H, Zhang Z, Wu S, Zhang Y, Fox EM, Man C, Jiang Y. Typing and evaluating heat resistance of Bacillus cereus sensu stricto isolated from the processing environment of powdered infant formula. J Dairy Sci. 2019. September01;102(9):7781–7793. doi: 10.3168/jds.2019-16392. [PubMed] [CrossRef] [Google Scholar]

141. Wu S, Jiang Y, Lou B, Feng J, Zhou Y, Guo L, Forsythe SJ, Man C. Microbial community structure and distribution in the air of a powdered infant formula factory based on cultivation and high-throughput sequence methods. J Dairy Sci. 2018. August01;101(8):6915–6926. doi: 10.3168/jds.2017-13968. [PubMed] [CrossRef] [Google Scholar]

142. Heini N, Stephan R, Ehling-Schulz M, Johler S. Characterization of Bacillus cereus group isolates from powdered food products. Int J Food Microbiol. 2018. October20;283:59–64. doi: 10.1016/j.ijfoodmicro.2018.06.019. [PubMed] [CrossRef] [Google Scholar]

143. Barash JR, Hsia JK, Arnon SS. Presence of soil-dwelling Clostridia in commercial powdered infant formulas. J Pediatr. 2010. March01;156(3):402–408. doi: 10.1016/j.jpeds.2009.09.072. [PubMed] [CrossRef] [Google Scholar]

144. Brett MM, McLauchlin J, Harris A, O’Brien S, Black N, Forsyth RJ, Roberts D, Bolton FJ. A case of infant botulism with a possible link to infant formula milk powder: evidence for the presence of more than one strain of Clostridium botulinum in clinical specimens and food. J Med Microbiol. 2005;54(8):769–776. doi: 10.1099/jmm.0.46000-0. [PubMed] [CrossRef] [Google Scholar]

145. Cho TJ, Rhee MS. Underrecognized niche of spore-forming bacilli as a nitrite-producer isolated from the processing lines and end-products of powdered infant formula. Food Microbiol. 2019. June01;80:50–61. doi: 10.1016/j.fm.2018.12.012. [PubMed] [CrossRef] [Google Scholar]

The Sporobiota of the Human Gut (2024)

References

Top Articles
Latest Posts
Article information

Author: Pres. Carey Rath

Last Updated:

Views: 6091

Rating: 4 / 5 (61 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Pres. Carey Rath

Birthday: 1997-03-06

Address: 14955 Ledner Trail, East Rodrickfort, NE 85127-8369

Phone: +18682428114917

Job: National Technology Representative

Hobby: Sand art, Drama, Web surfing, Cycling, Brazilian jiu-jitsu, Leather crafting, Creative writing

Introduction: My name is Pres. Carey Rath, I am a faithful, funny, vast, joyous, lively, brave, glamorous person who loves writing and wants to share my knowledge and understanding with you.